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Naturally emerging and deliberately released
pathogens demand new detection strategies to allow early
recognition and containment. We describe a diagnostic
system for rapid, sensitive, multiplex discrimination of
microbial gene sequences and report its application for
detecting 22 respiratory pathogens in clinical samples. 

Efficient laboratory diagnosis of infectious diseases is
increasingly important to clinical management and

public health. Methods to directly detect nucleic acids of
microbial pathogens in clinical specimens are rapid, sen-
sitive, and may succeed when culturing the organism fails.
Clinical syndromes are infrequently specific for single
pathogens; thus, assays are needed that allow multiple
agents to be simultaneously considered. Current multiplex
assays employ gel-based formats in which products are
distinguished by size, fluorescent reporter dyes that vary
in color, or secondary enzyme hybridization assays. Gel-
based assays are reported that detect 2–8 different targets
with sensitivities of 2–100 PFU or <1–5 PFU, depending
on whether amplification is carried out in a single or nest-
ed format, respectively (1–4). Fluorescence reporter sys-
tems achieve quantitative detection with sensitivity
similar to that of nested amplification; however, their
capacity to simultaneously query multiple targets is limit-
ed to the number of fluorescent emission peaks that can be
unequivocally resolved. At present, up to 4 fluorescent
reporter dyes can be detected simultaneously (5,6).
Multiplex detection of up to 9 pathogens has been
achieved in hybridization enzyme systems; however, the

method requires cumbersome postamplification process-
ing (7). 

The Study
To address the need for sensitive multiplex assays in

diagnostic molecular microbiology, we created a poly-
merase chain reaction (PCR) platform in which microbial
gene targets are coded by a library of 64 distinct Masscode
tags (Qiagen Masscode technology, Qiagen, Hilden,
Germany). A schematic representation of this approach is
shown in Figure 1. Microbial nucleic acids (RNA, DNA,
or both) are amplified by multiplex reverse transcription
(RT)-PCR using primers labeled by a photocleavable link
to molecular tags of different molecular weight. After
removing unincorporated primers, tags are released by UV
irradiation and analyzed by mass spectrometry. The identi-
ty of the microbe in the clinical sample is determined by its
cognate tags. 

As a first test of this technology, we focused on respi-
ratory disease because differential diagnosis is a common
clinical challenge, with implications for outbreak control
and individual case management. Multiplex primer sets
were designed to identify up to 22 respiratory pathogens in
a single Mass Tag PCR reaction; sensitivity was estab-
lished by using synthetic DNA and RNA standards as well
as titered viral stocks; the utility of Mass Tag PCR was
determined in blinded analysis of previously diagnosed
clinical specimens. 

Oligonucleotide primers were designed in conserved
genomic regions to detect the broadest number of members
for a given pathogen species by efficiently amplifying a
50- to 300-bp product. In some instances, we selected
established primer sets; in others, we used a software pro-
gram designed to cull sequence information from
GenBank, perform multiple alignments, and maximize
multiplex performance by selecting primers with uniform
melting temperatures and minimal cross-hybridization
potential (Appendix Table, available at http://www.cdc.
gov/ncidod/eid/vol11no02/04-0492_app.htm). Primers,
synthesized with a 5′ C6 spacer and aminohexyl modifica-
tion, were covalently conjugated by a photocleavable link
to Masscode tags (Qiagen Masscode technology) (8,9).
Masscode tags have a modular structure, including a tetra-
fluorophenyl ester for tag conjugation to primary amines;
an o-nitrobenzyl photolabile linker for photoredox cleav-
age of the tag from the analyte; a mass spectrometry sensi-
tivity enhancer, which improves the efficiency of
atmospheric pressure chemical ionization of the cleaved
tag; and a variable mass unit for variation of the cleaved
tag mass (8,10–12). A library of 64 different tags has been
established. Forward and reverse primers in individual
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primer sets are labeled with distinct molecular weight tags.
Thus, amplification of a microbial gene target produces a
dual signal that allows assessment of specificity. 

Gene target standards were cloned by PCR into
pCR2.1-TOPO (Invitrogen, Carlsbad, CA, USA) by using
DNA template (bacterial and DNA viral targets) or cDNA
template (RNA viral targets) obtained by reverse transcrip-
tion of extracts from infected cultured cells or by assembly
of overlapping synthetic polynucleotides. Assays were ini-
tially established by using plasmid standards diluted in
2.5-µg/mL human placenta DNA (Sigma, St. Louis, MO,
USA) and subjected to PCR amplification with a multiplex
PCR kit (Qiagen), primers at 0.5 µmol/L each, and the fol-
lowing cycling protocol: an annealing step with a temper-
ature reduction in 1°C increments from 65°C to 51°C
during the first 15 cycles and then continuing with a
cycling profile of 94°C for 20 s, 50°C for 20 s, and 72°C
for 30 s in an MJ PTC200 thermal cycler (MJ Research,
Waltham, MA, USA). Amplification products were sepa-
rated from unused primers by using QIAquick 96 PCR
purification cartridges (Qiagen, with modified binding and
wash buffers). Masscode tags were decoupled from ampli-
fied products through UV light-induced photolysis in a
flow cell and analyzed in a single quadrapole mass spec-
trometer using positive-mode atmospheric pressure chem-
ical ionization (Agilent Technologies, Palo Alto, CA,
USA). A detection threshold of 100 DNA copies was deter-
mined for 19 of 22 cloned targets by using a 22-plex assay
(Table 1). 

Many respiratory pathogens have RNA genomes; thus,
where indicated, assay sensitivity was determined by using
synthetic RNA standards or RNA extracts of viral stocks.
Synthetic RNA standards were generated by using T7
polymerase and linearized plasmid DNA. After quantita-

tion by UV spectrometry, RNA was serially diluted in 2.5-
µg/mL yeast tRNA (Sigma), reverse transcribed with ran-
dom hexamers by using Superscript II (Invitrogen,
Carlsbad, CA, USA), and used as template for Mass Tag
PCR. As anticipated, sensitivity was reduced by the use of
RNA instead of DNA templates (Table 1). The sensitivity
of Mass Tag PCR to detect live virus was tested by using
RNA extracted from serial dilutions of titered stocks of
coronaviruses (severe acute respiratory syndrome [SARS]
and OC43) and parainfluenzaviruses (HPIV 2 and 3). A
100-µL volume of each dilution was analyzed. RNA
extracted from a 1-TCID50/mL dilution, representing 0.025
TCID50 per PCR reaction, was consistently positive in
Mass Tag PCR. 

RNA extracted from banked sputum, nasal swabs, and
pulmonary washes of persons with respiratory infection
was tested by using an assay panel comprising 30 gene tar-
gets that represented 22 respiratory pathogens. Infection in
each of these persons had been previously diagnosed
through virus isolation, conventional nested RT-PCR, or
both. Reverse transcription was performed using random
hexamers, and Mass Tag PCR results were consistent in all
cases with the established diagnosis. Infections with respi-
ratory syncytial virus, human parainfluenza virus, SARS
coronavirus, adenovirus, enterovirus, metapneumovirus,
and influenza virus were correctly identified (Table 2 and
Figure 2). A panel comprising gene targets representing 17
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Figure 1. Schematic representation of Mass Tag polymerase chain
reaction (PCR).



pathogens related to central nervous system infectious dis-
ease (influenza A virus matrix gene; influenza B virus;
human coronaviruses 229E, OC43, and SARS;
enterovirus; adenovirus; human herpesvirus-1 and -3; West
Nile virus; St. Louis encephalitis virus; measles virus;
HIV-1 and -2; and Streptococcus pneumoniae, Haemo-
philus influenzae, and Nesseria meningitidis) was applied

to RNA obtained from banked samples of cerebrospinal
fluid and brain tissue that had been previously character-
ized by conventional diagnostic RT-PCR. Two of 3 cases
of West Nile virus encephalitis were correctly identified.
Eleven of 12 cases of enteroviral meningitis were detected
representing serotypes CV-B2, CV-B3, CV-B5, E-6, E-11,
E-13, E-18, and E-30 (data not shown). 

Conclusions
Our results indicate that Mass Tag PCR is a sensitive

and specific tool for molecular characterization of
microflora. The advantage of Mass Tag PCR is its capaci-
ty for multiplex analysis. Although the use of degenerate
primers (e.g., enteroviruses and adenoviruses, Appendix
Table and Table 1) may reduce sensitivity, the limit of mul-
tiplexing to detect specific targets will likely be defined by
the maximal primer concentration that can be accommo-
dated in a PCR mix. Analysis requires the purification of
product from unincorporated primers and mass spec-
troscopy. Although these steps are now performed manual-
ly, and mass spectrometers are not yet widely distributed in
clinical laboratories, the increasing popularity of mass
spectrometry in biomedical sciences and the advent of
smaller, lower-cost instruments could facilitate wider use
and integrated instrumentation. In addition to developing
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Figure 2. Analysis of clinical specimens. RNA
extracts from clinical specimens containing known
pathogens were reverse transcribed into cDNA
(Superscript RT system, Invitrogen, Carlsbad, CA;
20- L volume). Five microliters of the reaction
were subjected to Mass Tag PCR by using
primers coupled to Masscode tags (Qiagen
Masscode technology, Qiagen, Hilden, Germany).
Detection of (A) influenza virus A (H1N1), (B) res-
piratory syncytial virus (RSV) group B, (C) human
coronavirus SARS (HCoV-SARS), (D) human
parainfluenza virus (HPIV) types 1 and (E) 3, and
(F) enterovirus (EV) by using a 30-plex assay,
including 60 primers targeting influenza A virus
matrix gene (FLUAV-M), and for typing N1, N2,
H1, H2, H3, and H5 sequences, as well as
influenza B virus (FLUBV), RSV groups A and B,
HCoV-229E, -OC43, and -SARS, HPIV types 1, 2,
3, and 4 (groups A and B combined; 4 primers),
human metapneumovirus (HMPV, 4 primers),
measles virus (MEV), EV (degenerate primer pair
targeting all serogroups), human adenoviruses
(HAdV, degenerate primer pair targeting all
serogroups), human herpesvirus 1 (HHV-1, her-
pes simplex virus), human herpesvirus 3 (HHV-3;
varicella-zoster virus), Mycoplasma pneumoniae,
Chlamydia pneumoniae, Legionella pneumo-
phila, Streptococcus pneumoniae, Haemophilus
influenzae. Y-axis values indicate signal to noise
ratio. The bar indicates an arbitrary cut-off thres-
hold of 2.7 (4 times average background deter-
mined with random human DNA). 



additional pathogen panels, our continuing work is focused
on optimizing multiplexing, sensitivity, and throughput.
Potential applications include differential diagnosis of
infectious diseases, blood product surveillance, forensic
microbiology, and biodefense. 
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